[1] fengmei bai, libo yin, wei zhao, hongwei zhou, meng song*, yanchun liu, xianghua liu. deformational behavior of face-centered cubic (fcc) phase in high-pure titanium[j]. materials science and engineering: a, 2021, 800: 140287. [2] fengmei bai, yanyan li, jia wang, xianghua liu, jinxiu fang, zhenyi huang, meng song*. structural characterization of low carbon foil by asymmetrical rolling[c]. materials science forum, 2019,960(58-61) [3] meng song*, libo yin, fengmei bai, et al. size effect of ultra pure ti thin strip under asymmetrical rolling[j]. iop conference series: materials science and engineering, 2020,772:012087 [4] meng,song, xianghua liu, lizhong liu, et al. size effect on mechanical properties and texture of pure copper foil by cold rolling [j]. materials, 2017, 10(5) , 538. [5] meng song, xianghua liu, xin liu, et al. ultra-fine microstructure and texture evolution of aluminum foil by asymmetrical rolling [j]. journal of central south university, 2017, 24(11): 2783-2792. (sci, if:0.657) [6] meng song, xianghua liu., delin tang. texture evolution of commercially pure copper during ultra-thin strip rolling [j]. advanced materials research, 2014, 941-944: 1532-1536. [7] 宋孟,刘相华,孙祥坤等.单层晶金属极薄带的制备与尺寸效应研究 [j]. 材料热处理学报, 2016(s1), 5-11. [8] 宋孟, 刘相华, 孙祥坤. 工业纯铝极薄带异步轧制过程中的织构演变 [j]. 武汉科技大学学报, 2016, 39(1): 36-40. [9] 刘相华, 宋孟, 孙祥坤等. 极薄带轧制研究与应用进展 [j]. 机械工程学报, 2016, 49(6):198-206. [10] delin.tang, xianghua liu, meng song, et al. experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling [j]. plos one, 2014, 9(9): e106637 [11] xin liu , xianghua liu , meng song , et al. theoretical analysis of minimum metal foil thickness achievable by asymmetric rolling with fixed identical roll diameters [j]. transactions of nonferrous metals society of china, 2016, 26(2): 501-507. [12] qingbo yu, xianghua liu, ying sun, meng song. extreme extensibility and size effects of high-carbon martensitic steel subjected to micro-rolling [j]. scientia sinica technologica, 2015, 45(11): 1187. [13] fengmei bai, xin ye, hongyan zhang, hongwei zhou*, meng song, et al.a significant increase in the hardness of nanotwinned titanium alloys prepared via the martensitic phase transformation, materials letters, 2019, 255: 126507. [14] fengmei bai, hongwei zhou*, xianghua liu*, meng song, et al. masing behavior and microstructural change of quenched and tempered high-strength steel under low-cycle fatigue, acta metallurgica sinica (english letters), 2019,32(11):1346-1354. |
[1] 宋孟,李妍妍,白凤梅,黄贞益,刘相华. 一种深筒件防起皱拉深模具和工艺, 专利号:zl201910754275.7 ; [2] 宋孟,尹理波,白凤梅,江杰,李妍妍,黄贞益,刘相华. 一种制备高强度极薄带的组合成形方法, 专利号:zl201910986061.2; [3] 宋孟,尹理波,白凤梅,江杰,李妍妍,黄贞益,刘相华. 一种电子级低氧超高纯钛极薄带的制备方法,专利号:zl201910985968.7; [4] 宋孟,李妍妍,白凤梅,黄贞益,刘相华. 一种深筒件高减薄率拉深工艺,专利号:zl201911031829.7; [5] 宋孟,李妍妍,白凤梅,黄贞益,刘相华. 一种深筒件拉深模具和高速拉深工艺,专利号:zl201911030960.1; [6] 刘相华,宋孟,缪书昆,孙祥坤,冯禄。一种镁及镁合金极薄带的轧制方法,专利号:zl201510541593.7; [7] 刘相华,宋孟,孙祥坤,陈守东,邵云云,冯禄. 一种纳米晶金属极薄带的制备方法,专利号:zl201510509875.9; [8] 刘立忠,宋孟,于庆波,刘相华,孙祥坤,缪书昆. 一种多层异种金属复合极薄带的制备方法,专利号:zl201510541165.4; [9] 刘立忠,宋孟,刘相华,缪书昆,孙祥坤,邵云云. 一种多层金属/石墨烯复合极薄带的制备方法,专利号:zl201510541161.6; [10] 孙祥坤,刘相华,宋孟,汤德林. 一种采用支承辊传动的极薄带轧机及其轧制方法,专利号:zl201410256700.7; [11] 刘相华,孙祥坤,宋孟,祁俊龙,冯禄,赵阳. 一种金属极薄带轧制过程中张力施加装置及方法,专利号:zl201510516299.0; [12] 刘相华,孙祥坤,宋孟,闫述,陈守东,祁俊龙. 一种异速比可在线调节的金属极薄带负辊缝轧制方法,专利号:zl201510514066.7; [13] 刘相华,孙祥坤,宋孟,闫述,冯禄. 一种异速比可在线连续调节的极薄带组合成形轧机,专利号:zl201510516327.9; [14] 刘相华,黄贞益,宋孟,白凤梅,周红伟. 一种嵌入式筋槽互锁金属轧制复合工艺及其制造系统,专利号:zl202010137409.3; [15] 刘相华,黄贞益,宋孟,白凤梅,周红伟. 带有嵌入式筋槽互锁的异种金属轧制复合方法,专利号:zl202010137437.5; [16] 周红伟,白凤梅,宋孟,孙雅馨,刘相华. 一种在高纯钛薄带中制备面心立方相的方法,专利号:zl202010989118.7; [17] 刘相华,孙祥坤,汤德林,宋孟. 一种极薄带轧机及其轧制方法,专利申请号:zl201410145807.4; [18] 刘相华,闫述,缪书昆,孙祥坤,宋孟,赵阳. 一种在热镀锌过程中完成碳配分的q&p钢的制备方法,专利号:zl201510461123.x; [19] 刘相华,孙祥坤,陈敬琪,徐梓淦,宋孟,赵启林. 一种传动方式可选的金属极薄带轧机及其轧制方法,专利号:zl201710006846.x。 |